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Data Capture at High Speeds

= Problem: Temporary storage of “lots” of data
Example: Astronomical observations
Example: Network traffic capture
« Trivial Example: TiVo

s Most data is worthless over the long run
s There’s too much of it to go into permanent storage

= But sometimes the data is actually worthwhile

...and so were the last ten minutes of it, but you didn’t know that
until just now

= Need a system that can address these problems



Motivating Project: Long Wavelength
Array

» Low Frequency Radio Telescope
s Geographically distributed but synchronized
= Most collected data is just noise

= Basic Statistics:
« 53 stations (initially)
« 400 km base line
« 580 Mbit/sec data rate
« ~30 Gbit/sec total
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Requirements

= Quality of Service Guarantees

* Incoming data must be recorded on the first (and only)
transmission at a set bandwidth

« There needs to be a mechanism to read data back off as well

= Reliability
- Data cannot be regenerated and thus must not be lost
« QoS must be maintained in the face of hardware failure

= Infrastructure
- Efficient use of commodity hardware
« Must be able to run in a desert shack
« Scale to hundreds or thousands of units

Right: Locations of LWA stations
over southwestern New Mexico




Our Solution: Ring Buffer

s Fixed Size
« Allows “X” time units of storage
* Very little bookkeeping required

= Limited Lifetime

- Data is quickly overwritten if not
specifically preserved

* No “cleaning up” needed

= Limited Indexing/Metadata

« Only a small amount of primary
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A New Filesystem

= Many standard filesystem features useless
* No need for file creation, deletion, stat, etc.
Only ever one writer (though there may be several readers)
« Most metadata is useless
* Indexing is vastly simplified

= All operations done on large blocks
« Aggregated writes for maximal I/O performance
- Fragmentation problems minimized

= File system never “shuts down”
 No need to maintain an on-disk index
 Disk head movement at a minimum
« Can reconstruct index again at startup, but time is not critical



Big Data
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One data chunk

s Basic indexing: one data chunk, one ID
- Easily maintained in main memory with big enough chunk size

s Fixed size: never need to think about “sub-chunks”
- Always read and write on fixed-sized chunks of data

= Simple parameterization

« Configuring such a setup requires only the chunk size and ID
information



Small Data
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One data chunk has lots of individual
pieces of information

= Full index cannot be kept in main memory
« Need to store secondary indexing information on disk

= Variable size
« Minor internal fragmentation
- Might want smaller portions of data read or preserved

x Complex parameterization
« Multiple things to index on




Prototype and Testing

= Prototype System: Mahanaxar
« Currently runs on single hard drives for both big and small data

= Primary comparison: flat file system (ext2)
 [Initial testing on several different filesystems
« ext2 has slightly better performance

= Database comparisons show very poor performance

* As the system ages at 99.9%+ capacity, database speed
collapses

= Performance testing over several hard drives yielded
similar data

* For these results, one particular hard drive is used for all
comparisons (a 1.5 TB Western Digital SATA drive)

« All results are from a system fully-populated (99.9%+) with data



Disk Profiling
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Mahanaxar vs. Flat Files

= Requested write speed:
60 MB/s

= Ordinary filesystems
mechanisms used for
access in filesystem
testing

= Maximum theoretical
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Mahanaxar vs. Flat Files with
Constrained Access, 60 MB Elements
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= Both systems maintain
60 MB/s requested
write speed (not shown)

= Mahanaxar has 3-4 ol
times as much spare
bandwidth for reading

s Large element size
provides best possible

circumstances for flat |
file system T
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Mahanaxar vs. Flat Files with
Constrained Access, 1 MB Elements

s Requested write
speed still 60 MB/s

= Mahanaxar maintains
60 MB/s (not shown)

= Flat files only manage
about 35 MB/s

« Nearly half of the data is
dropped

= Flat file system
available read
bandiwidth is minimal
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Questions

= What happens when you run a commodity hard drive
24/7/365 at 99.9%+ capacity?

= How would one control ten thousand nodes
simultaneously?

= Other Questions?
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